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THE METHOD OF BOUNDARY EQUATIONS OF THE HAMMERSTEIN-TYPE
FOR CONTACT PROBLEMS OF THE THEORY OF ELASTICITY
WHEN THE REGIONS OF CONTACT ARE NOT KNOWN™

B.A. GALANOV

Novel formulations are given for the classical and non-classical, three-
dimensional contact problems. The inequality-type constraints do not appear
in the formulations as they do in the method of varational inequalities
/1—8/ and in existing formulations of the contact problems /9— 13/. The
complete system of equations of a contact problem consists of one boundary,
equation of the Hammerstein-type and the usual equations of equilibrium
for the compressive force and moments acting on the bodies. If the mutual
rotations of the bodies and their closeness are known, the solution of
the boundary Hammerstein-type eguation readily yields the contact pressure
and region of contact.

By formulating the problem in this manner and using modern methods
of the theory of operator equations we can investigate the existence and
uniqueness of the solutions and some of their properties in very general
cases (e.g. those of the multiconnectivity of the regions of contact
sought) . Moreover, the possibility arises of solving the problem using
existing methods of solving Hammerstein-type eqguations /14--17/. Two
types of problems, one of them classical, are used to study the correctness
of the formulation of the contact problem.

1. The classical contact problem. Let us consider the case when the contact problem
can be reduced to determining, in the half-space 1z >0, the harmonic function u (M) = u (z.

)M =0F" a r—oo, r= VzF © §f F 2, and a plane closed region S E, = {z = 0}
from the conditions
2mdu (M) = g(M): u,/ (M) >0, M= S {1.1)
2ndha (M) > g (M) u, (M) = 0. M = (E, N\ 9)
(g (M) = C (E,), A = const > 0)

We assume that a bounded region Q, = {M: g(M) >0}, g (M) 0 with M = Q, exists (the
region £, can be multiply connected}.

Such a formulation of the problem corresponds to frictionless imbedding of a stamp in an
elastic half-space /9-—13/, provided that the settlement of the stamp and its rotation are
both known, i.e. that the function g (M) = hy + hyz -+ hyy — f(z, y) is known. The function
f(z, y) determines the geometry of the stamp.

1f we introduce the potential of the simple layer of density p (M), M = §, then we have
for z=20

u (M) =\ K (L, M) p(V)dSw; K (M, N)=

8
[z —EP+@—nPl"s M(z,y), NEW

and problem (1.1) becomes equivalent to the problem of determining the contact pressure p (M),
and the regions of contact S from the system

A KM N)p(N)dSx=g(M), p(M)=0, MeS (1.2)

o

A KM, N p)aSy> g p(N) =0, ME@N\S)
5
where Q is an arbitrarily bounded region containing the closure Qg Clearly, Se Q*O.
Let us introduce the positively homogeneous bounded operators Q and ¢, placing in the
functions v{M),M & Q in correspondence with the functions u* (M) and v (M), M&Q
according to the rules
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v (M) = Q (v (M) = sup {v (M), 0} (1.3)
v (M) = @ (M) = inf (v (M), 0); v (M) = v* (M) + v (M)

Let us investigate, for the unknown function ¢ (M), the non-linear equation

BQ~ (v (M) + A(S K(M,N)Qv(N)dSy=g(M); M,Ne=Q

which we shall write for convenience in the operator form as
ug v+ AKQu = g (1.4)
The parameter u >0 can take any value, The dependence of the solution of Eg.(1.4) on
p  will be shown later {(Theorem 5 and its corollary).
Elementary transformations reduce Eq. {1.4) to a Hammerstein-type egquation and can be
written in the following equivalent forms:

v =g+ BQv, w= BFw
(B=FE —MK, w=p—g Fw=0w+7y)
where B is a linear operator and E is an identity operator.

Theorem 1. If v* is a solution of Eq.(1.4), then (p = (Qv*, § = {M :v*>0}) is a solution
of system (1.2) and St when Q.,#% (7; conversely, if {p, S) is a solution of system (1.2),
then the function
vr=ptlg et p— T Kp, M =Q (1.5)
is a solution of (1.4). The region § c¢an be multiply connected.

Proof. First we shall show that S if Qg = 7. Let us assume the opposite. Then
(1.4) implies the inequality g<<0 which contradicts the existence of Q,s= (.

Let v* be a solution of (1.4). When Me=J§, (1.3}, (1.4) imply the relations p = Qv* >
0, AKp =g 1If MS, then v* <0, p@v* + AKQv* =g and AKp > g and thisproves the right-hand
side of the theorem.

Now let (p, §) be a solution of system (1.2). When M & §, the equality v* = p follows
from (1.2), (1.5). If M&(QN\ S), then we have p* = plg — Au'Kp <0 and we can write

(1.5) as: B = g o Ot — AKQUt, M e
i.e. v* is a sclution of (1.4).

Hence, to solve the contact problem (1.2), it is sufficient to find the solution v* of
Eqg.(1.4), since p = @u* and § = {M:v* >» (0}). Therefore from now on we shall concern ourselves
with Eq.(1.4).

In addition to (1.4) we shall consider, in L, (Q), a regularized boundary condition

eQu -+ pQv + AKQu = ¢ (1.6)
with parameter &> 0. We will write Eq.(1.6) in the form
v=pTlg + BOv (B = (1 — ep™) E — Ap"'K) (.7

and study it for such fairly large values of u that when e < (0, €o]. €, = const > 0, the following
inequality holds:

I Bel=sup|1 —eu™ — M =g <1

Here A; >0 are the characteristic values of the operator K {the norm of the operator
is defined in /17/, p.191).

Then (by virtue of the principle of compressed mappings applied to (1.7)) Eq.(1.6) has
a solut(izon ve = L, (Q) for all e= (0, g,  Since the kernel K (M, N) has a weak singularity,
ve = C (Q).

Let us introduce the notation

Q= (M:0,>0), Q =<0, (a b)=§ a{t)b(t)dt

The differential properties of the solutions v, of (1.6) are established by the following
lemma.
Lemma. If g'<=L,(Q) 1<p<C oo, then v’ &€ Ly (Q) 1f g ' = C(Q), then v & € (@), v’ &
C Q7).
Proof, We have for MeQ*
M) =g (M) — 27t (KM, Ny (V) asy {1.8)
fees

v (M) =71 g" (M) — Ae™t \' K (M, Nyv, (V1 dSy 1.9y
Ot
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where the prime denotes a derivative with respect to zor y, and its meaning is determined
below.

From the theorem on differentiation of integrals with a weak singularity /18/ it follows
that the second term on the right-hand side of (1.9} is a function belonging to L,(R). Therefore,
integrating this term by parts and taking into account the finiteness of v.*, and the equations
Ky (M, N)= —E/ (M, N), Ky (M, N)= —K_ (M, X), we obtain

e, + Akv = ¢, M,NeQ> {4.10)

From this it follows that the function u*, M =Q,* belongs to the same class of functions
as g (M), M = Q..

In the same way as for (1.8), (1.10), we have

pv, + AKvt = g, py/ + ARyt = g’ (1.4
Me Q-
The first part of the lemma follows directly from (1.10), (1.11). The same eguations

imply that " & C(Q") and v, &C(Q,7) when g eC(Q (in general case i/ &C (Q).

The theorems which follow establish the conditions of existence (Theorem 2) and uniqueness
(Theorem 3) of the solution v* of (1.4), the continuous dependence of u* on the vector
parameter k = (A, hy, hy) (Theorem 4) and some properties of v* (Theorem 5 and its corollary)

Theorem 2. The necessary and sufficient condition for the solution p* & L,(Q) of (1.4)
to exist is, that
[velle, < e e= (0, gl (1.12)

where the constant ¢ is independent of e,

Proof. Necessity. Let pv*= L,(Q) be a solution of (1.4) and S = {W : v* > 0}, Let us
denote by L, (Q) the set of functions finite in Q and belonging to L, (Q), and consider the
following functional on the convex set @ = {v & L," (Q), v > 0} closed in L, :

¢ () =1k (Kv, v) — (g, V)
The functional is trictly convex and (p (v} = grad ¢ (v) = AKv — g. We will show that

inf @ (v) = ¢ (L*") (1.13)
reE®
To do this, it is sufficient to confirm the inequality /19/
(" W), v —v*) =0, Vv =0
or
(AKV** — g, V) > (AKv*" — g, v*), Vv = o (1.14)
Since AKv** —g> 0, v** =0 when M & § and AKv** — g =0, v** >0 when M & §, it
follows that the right-hand side of (1.14) is equal to zero and the left-hand side is positive,
and this proves (1.13).
We can show, in the same manner, that the unigue function p* = Qu furnishes a minimum
to the functional g (v) = Y,e (v, v) + @ (v}, v &= ©. Since for any e < (0, ¢,] we have

e (067) < Vg (%7, 0*7) - Tk (KU¥T, v%7) — (g, v*7)
or
Yo [(0**, %) — (17 v)] > ¢ (ve’) — @ (0*) > 0
it follows that
lve I <[ o** ., Ve (0, (1.15)
The existence of the constant ¢ in inequality (1.12) obviously fcllows from inequality
(1.15).

Sufficiency. Let the inequality (1.12) hold. We will write Av = pQv + AKQuv — g and
form a sequence (n =0, 1,2, .} where ¢ >0 and e, — 0 as n-— oo. We separate out of
the sequences {ve } {0v:}, (@ ve, } weakly convergent in L, , the subsequences (we can always do it
by virtue of (1. 12) and' the reflex:LVJ.ty of the space L, (see /20/, p.60)), and assign to them
the same notation as that of the original seguences, i.e. ven—-v*.()ven—s w,Q Ve, —= U We shall

show that v* is a solution of (1.4).
Since Qv., = wlg — ApT KQue, — €,17 QU . inequality (1.12) holds and K is a completely
n

continuous operator, it follows that Q’ven—> u /20/. Therefore
(Qve, ve,) — (u, v¥) (1.16)
Using the monotonicity of @7, we can write (@7t — Qv t — v ) >0 for any < L,. Passing

to the limit (taking (1.16) into account), we obtain
(Ot —u, t —v*)y >0, Vt=L,
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i.e. Qv* =u (by virtue of the continuity of @  and the Minti lemma /14/). From this it

follows (since Qv = v — @Qv) that Qv* = w.
Passing to the limit in the relation

Ave, = PQ—Uen + anvs,, -+ AKOL’en —8— EnQven = enQUen
as v, — v*, we obtain Av* =0, i.e. v* & L, is a solution of (1.4). This proves the theorem.
n
Note 1. If V%, & W@, p>1 and | v, lw, ¥ S ¢ (the constant ¢ is independnet of e,), we

can separate from the sequence v (on the strength of the Sobolev inclusion theorems /17, 18/)

the subsequences converging strongly to v* in the spaces into which W, can be compactly
imbedded. For example, when p>2, the sequence will converge uniformly to »*. The conditions
of inclusion vy, & W, (@) are given in the previous lemma.

Note 2. The following estimate follows direclty from (1.6):
T, <mtele, m= g;fQK (M,N)>0
therefore

lim | Av = limefe*|, =0
lim | dvl, = lim ef &" I,

Theorem 3. 1f Eq.(l.4) has a solution v* & L,(Q), it is unique.

Proof. let

pQ v + AKQu, = g, pQv, + AKQu, = g, v, % 1, (1.17)
We write
d=Qu, —Qu, & =Qv,—Quvy, § =y, —p; (1.18)
Then from (1.17) we have
pd” + AKd =0 {1.19)

p(d, d) + A (Kd, d) = 0; pd — pd + AKd = 0
(d—v d) == (O_Ulv Ql)?) - (Q-UZV va) > 0

Therefore (1.19) and the strict positiveness of K together imply d=0,8 =0. The
theorem is proved.

Theorem 4. Let h be a real parameter, and g(M)=h —[(}M), 1,* he [0, hy a family of
solutions of (1.4) depending on h. Then ,* depends continuously on h and the continuous
functiocn

P(h)y= ‘\ Qn*(M)dSu
2
is strictly increasing (P (k) is the force impressing the stamp to the depth h).
Proof. Let vy and p, be solutions of (1.4) corresponding to the values h =h, and h =},
from the interval [0, ky). Then, taking into account the notation (1.18) we have
pd~ + AKd = hy — by, pé6 — pd + AKd = hy — k, (1.20)
nA(d, d) + A (Kd, d) = (b, — hy, d); (d7, d) 3> 0
Since (h, — hy, d) = (hy — Ry) (P (hy) — P (h,)) and the left-hand side of the last equation of
(1.20) is positive, it follows that P (k) is a strictly increasing function. Further, from
the last equation of (1.20) and the strict positiveness of K it follows that d— 0 as h, — h,.
Therefore the penultimate equation of (1.20) shows that 8 — 0 as A — h;, which implies the
continuous dependence of y,* on h. The theorem is proved.

Note 3. We can show in the same manner the ocntinuous dependence of u* on the vector
parametexr h = (k, hy, h3) (g (M) = hy -+ hgz + hgy — f (z, y)). Such a continuous dependence is of essential
importance when the value k= (h;, ky, k) in the contact problem is determined from the condition

S Q (v,* (M))dS,, = P, ( ¥Q (v,* (M) dSy, = M, { 20 (v, (1)) a8y =M,
2 [+ Q

where (P, M,, M,} are given values (P is the force pressing down the stamp, and M., My are the
moments acting in the stamp).

Theorem 5. Let v, and v, be solutions of (1.4) corresponding to the values p = p; and
W= o, iy = po. Then Qv = Qu,.
Proof. We shall assume, to be specific, that Ap = p, —~ p, > 0. We have
mQ@v + AKQu, = g, p.Qv, + AKQu, = g (1.21)
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Let us subtract the first equation of (1.21) from the second, and scalarly multiply the
result by d. We obtain
Ap(Qvy, d) + u, (d7, d) + A (Kd, d) =0 {1.22)
We can confirm direclty that the termson the left-hand side of (1.22) are non-negative
numbers. Therefore d = 0, from which the assertion of the theorem follows.

Corollary. The existence of a solution of (1.4) for some value of p = p* implies the
existence of solutions of (1.4) for all u > 0.

Note 4. We can deal in the same manner with equations of the type (1.4) in the case of
non-symmetric kernels K (M,N) (e.g. for the problems discussed in /21/ and in contact problems
with frictional forces).

Thus the contact problem formulated can be recuced to solving Eg.(1.4), and various
approximate methods /14—17/ can be used to achieve it. An appropriate method based on the
application of a regularized boundary equation was discussed in /22/.

2. A contact problem for bodies with linear and non-linear, Winkler-type
covering /9—11/. 1In these problems the first condition of (1.1) has the form
@ (u," (M) =+ 2aku (M) = g (M)
Here @ (f) (—> <Ct<C o0) is a strictly increasing, continuous function of its arguement

t, ©©) =0
A system analogous to system (1.2} is written for the unknown pair (w (M), §) thus

w (M) + A ﬂ KM N)H (e (N)dSx=g(M), w(M)>0, McS$ 2.1)
A SA (M, N)H (w(N))dSy > g(M), w(M)=0, M=@Q\.S)

s

where H is a function inverse to @, w (VW) = @ (p (M)). As before, (M) is the contact pressure
and S is the area of contact. In what follows, we shall assume that the function H satisfies
the conditicn
VH (@) | <Cop lw P55y = const, 0 << 2 < 1
Let us consider the Hammerstein-type eqguation for the unknown function v (M)
v(M) =4 \ K(M,N)Q(H @ (N)dSxy=g (M), M,N=Q
o

which has the following operator form:

- LANQHe = g (2.2)
If ¢* is & sclution of {2.2), then the function w = Qu* and the set § == {3/: v* =0} is
a sclution of system (2.1) and S # 7 when Q,% . The converse it also true. If (u. §) is
a sclution of (2.1), then the function v* = g — AKHw (M = Q) is a solution of (2.2) The
proof is analogous tc that of Theorem 1.
Thus problem (2.1) is reduced to that of solving the Eammerstein Eq.(2.2). The unigueness
of the solution t* of (2.2) and its continuous dependence on the parameter h = (hy, h,. hy) 1is

established in the same manner as in Theorems 3 and 4. The sufficient conditions for a solution
of (2.2) to exist are given in Theorem 6, where the constraints imposed on the function g are
somewhat weakened (the assumption that the bounded region Q, = {M: g > 0} exists is retained.
Theorem 6. Let the following conditions hold:
g=Ly (@ p =1+ 1o Yy <<

Then Eq. (2.2) has a solution 1* = L, {Q). Moxeover, if g C(Q), then v* == (C (Q).
pProof. The operator K is a completely continuous operator from Lg. g =1 -+ «, into Lj* =
L,p=1-+1a /18/. The contraction of K on L, is a selfconjugate, strictly pesitive operator.

Therefore a square root D = K'+ exists, which is a completely continuous operator from L,
into L,* /14/. The conjugate operator D* acts from Lg* into L,

If we make the change of variable /14/ v = Dt + g in (2.2), we cbtain the equivalent
eqguation I
Ft=1t =~ AD*QH (Dt -~ g) =0;t = L, (=.2)
with a continucus, menotonic and potential operator F (the monotonicity of F follows from the
monotonicity of the function QH (v)).

Let us find a lower estimate for the scalar product (Ft, 1)

(Ft. 1) = (t. &) — % (QH (Dt + g). Dt + g) —

AQH Dt +g. 8=t t)y—h(QH (Dt —g), g) >
(t. ) =2l gl !l QH (Dt + &) lir,



639

Using the properties of the operators @ and H and the Minkowski inequality, we obtain
WQH (Dt + &) i, <ce (WD NN 2, + 11 £l )

Therefore, we have the following estimate:

bl \Vo
(P> 111t — e 18k, 1152 (101 + 172

and a number p >0 exists when o« >, such, that when |ti, > p, the inequality (F$, ) >0

holds, i.e. according to the Brauder~Minti theorem /14/ Eq.(2.3) has a solution * =L, and

(2.2) has the corresponding solution v* = Dt* 4 g.
We shall show now that v* = € (Q) when g=C(Q). Let M =S8 = {M: v* > 0} (the existence
of Sz (¥ is shown in exactly the same manner as in Theorem 1). Then we have, for M & S,

v* (M) + 4§ KM, M) B (0r (V) dSw =g (M) (2.4)
5
and the following alternative is possible: 1) p* (A) (M = §) is a discontinucus bounded function,
and 2) v* (A (M = §) is an unbounded function.

1.0

\\ .
< - 874
8.3 ! AN k)
: \ Iy 4
! \\
\ \ 0.5
\ 1
J 7 \ ]
I 0,5 1.0 z I/} 0.5 L8 1.5 hg¢
Fig.l Fig.2

In the first case the left-hand side of (2.4) is a discontinuous bounded function (since
JEHv* is a continuous function), and this contradicts the continuity of g. 1In the second
case the left-hand side of (2.4} is an unbounded function (since it is a sum of non-negative
functions of which at least one is unbounded). This again contradicts the continuity of g.
Therefore v* (M) (M = §) is a continuous function. This, and the properties of the potential
of a simple layer imply that the function p* = g — AKQHv* (M = Q) is continuous, and this
proves Theorem 6.

Note 5. If geC(Q), then the operator U, completely continuous in C(Q) defined by the
relation Uv= g—AKQHv:, maps the segment {Ug gl C €(Q) onto itself (the constraint |H (w)|< e, |
w[® can be omitted here). Therefore the Schauder principle /17/ implies at once that Eg.
(2.2} has a solution v eUgg for all 71>0.

Note 6. When p=¢, Eg.(1.6) is of the type (2.2).

The method discussed here of studying contact problems using boundary, Hammerstein-type
equations, is fairly general. In many contact problems {(e.g. in problems dealing with contact
between plates and beams with an elastic foundation, and in problems of contact between rough
bodies), the conditions of contact between the bodies for which Green's function is known
i.e. the response of each body to a unit excitation), can be reduced with help of the operator
Q@ to a Hammerstein-type equation.

Numerical example. Eg.(l1.2) was soclved with ¥ = E using the method of successive
approximations
Tnyy == §— AKQr =g n=0,1,2,... (2.5}
for the following data:
g{M)y="h~{f{z,y)

@Ry (z—aptyy, 2320
s ={ @Ry {(r+a)+yh), <0
Q={—15< 515 —1.0< ys 1,08, 0<Kh<0.5.1073

which correspond to the problem of imbedding a stamp with Winkler-type covering, te a depth h
into an elastic half-space. The stamp consists of "paired" paraboloids of rotation whose
apices are separated by a distance 2a(e> 0).

Eq. (2.5) was discretized, remembering that the solution :* is symmetric about the z and
y axes. The nodes of the mesh approximating the rectangle ©, have the following coordinates:
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T e oy =y 4, j=0, 4, 2,0 km
Here hy= {,5/m, hy = 1.0/m are the mesh steps in the rz and y direction, respectively. The
operator K was approximated as in /22/ using the rectangle formulas. Process (2.5) was terminated

according to the criterion Ju,u— val/fen|<e &= 1072

Fig.l shows the isobars p (M)10*= ¢= const for the following values of the parameters:
7. = 0,07; R=10% a= 05 m = 10. The solid lines (,7,2,3 have the corresponding values = U; 3.4¢:
7,96; 10.64 and k= 1,25-10"* (the region S of contact is doubly connected and the force pressing
down the stamp is P = 7,9-107°). The dashed lines 4,5,6,7 have the corresponding values c== U
16,5; 26,7; 28,9 and k= 3,75-10-* (the area S of contact is singly connected, P = 3,7-107¢).

Fig.2 shows the function P = P (k). The point (,, r,) corresponds to the passage from the
doubly connected region of contact to the singly connected one.

The author thanks S.A. Kravchenko for carrying out the computations.
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